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Thermal Behavior of a Stagnant Gas Confined
in a Horizontal Microchannel as Described
by the Dual-Phase-Lag Heat Conduction Model
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The transient thermal behavior of a stagnant gas confined in a horizontal
microchannel is investigated analytically under the effect of the dual-phase-lag
heat conduction model. The microchannel is formed from two infinite hori-
zontal parallel plates where the upper plate is heated isothermally and the
lower one is kept adiabatic. The model that combines both the continuum
approach and the possibility of slip at the boundary is adopted in this study.
The effects of the Knudsen number Kn, the thermal relaxation time τq , and
the thermal retardation time τT on the microchannel thermal behavior are
investigated using three heat conduction models. It is found that the devia-
tions between the predictions of the parabolic and the hyperbolic models are
insignificant. On the other hand, the deviations between the parabolic and
dual-phase-lag models are significant under the same operating conditions.

KEY WORDS: dual-phase-lag heat conduction model; horizontal microchan-
nel; macroscopic heat conduction models; stagnant gas; thermal behavior.

1. INTRODUCTION

Recently, a growing interest in microchannel fluid mechanics and heat
transfer has emerged because of possible cooling applications in space
systems, manufacturing and material processing operations, and in high-
power-density chips in supercomputers and other electronics. As this area
continues to grow, it becomes increasingly important to understand the
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mechanisms and fundamental differences involved with fluid mechanics
and heat transfer mechanisms.

It has been reported that phenomena in microgeometry may dif-
fer from those in macroscopic counterparts. Several factors that are
dominant in the microscale have been identified through a number of
experimental, analytical, and numerical works. Among them are the non-
continuum effect and the compressibility effect; various surface effects
have been under vigorous investigation. In microgeometries the flow is
described as granular for liquids and rarefied for gases, and the walls
“move” [1]. The approximations for continuum flow analysis fail for
microscale flows as the characteristic length of the flow gradients (L)
approaches the average distance traveled by molecules between collisions
(mean free path, λ). The ratio of these quantities is known as the Knud-
sen number (Kn = λ/L) and is used to indicate the degree of flow rare-
faction or scale of the flow problem. Rarefaction or microscale effects are
ignored by the Navier–Stokes equations, and these equations are therefore
strictly accurate only at a vanishingly small Kn(Kn < 0.001). The appro-
priate flow and heat transfer models depend on the range of the Knudsen
number, and a classification of the different gas flow regimes is as follows:
Kn< 0.001 for continuum flow, 0.001 <Kn< 0.1 for slip flow, 0.1 <Kn<

10 for transition flow, and 10<Kn for free molecular flow [2].
In the slip flow regime, the continuum flow model is still valid for

calculations of the flow properties away from solid boundaries. However,
the boundary conditions have to be modified to account for the incom-
plete interaction between the gas molecules and the solid boundaries. The
important features of gas flow in microducts are mainly due to rarefaction
and compressibility effects. Two more effects due to acceleration and a
non-parabolic velocity profile were found to be of second order compared
to the effect of compressibility [3]. The rarefaction effect can be studied by
solving the momentum and energy equations with slip velocity and tem-
perature jump boundary conditions.

In spite of the large amount of published research so far in the
microfluidics literature (for more details, the reader may refer to the fol-
lowing review papers [4,5]), many parts of the physical laws governing the
fluid flow and heat transfer in microgeometries remain unknown. Recently,
discrepancies between microchannel flow behavior and macroscale Stokes
flow theory have been summarized in a review [6]. It is widely accepted
that the deviations observed in gas flows can be attributed to slip at the
wall [7], and several researchers have reported results for gas flows [8–12].

In parallel to the breakdown of the continuum flow approach and
the no-slip boundary condition from hydrodynamics and a thermal point
of view, the classical diffusion energy equation, based on Fourier’s law,
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does not apply well in microdevices. The thermal behavior of microchan-
nels has been extensively investigated by many researchers using different
models, designs, and geometrical and operating parameters. Most of these
studies are based on the parabolic (diffusion) heat conduction model. The
parabolic heat conduction model is able to describe the thermal behav-
ior of these microchannels in many practical applications. However, there
are numerous cases in which the utilization of the hyperbolic or the dual-
phase-lag heat conduction models becomes essential [13]. Examples of
these cases are very fast transient heat conduction processes, heat conduc-
tion at cryogenic temperatures, high heating rate processes, and situations
involving high temperature gradients similar to heat flow found in micro-
systems. In these applications, lagging is expected to occur between the
heat flux and the temperature gradient across the fluid domain. Cattaneo
[14] and Vernotte [15] suggested independently a modified heat flux model
in the form,

�q(t + τ̄q , �r)=−k �∇T (t, �r) (1)

where �q is the heat flux vector, k is the thermal conductivity, and τ̄q is the
phase-lag in the heat flux vector. The constitutive law of Eq. (1) assumes
that the heat flux vector (the effect) and the temperature gradient (the
cause) across a material volume occur at different instants of time, and the
time delay between the heat flux and the temperature gradient is the relax-
ation time τ̄q . To remove the preceding assumption made in the thermal
wave model, as proposed in Eq. (1), the dual-phase-lag model is proposed
[16–18]. The dual-phase-lag model allows either the temperature gradi-
ent (cause) to precede the heat flux vector (effect) or the heat flux vector
(cause) to precede the temperature gradient (effect) in the transient pro-
cess. Mathematically, this can be represented by [19–21]

�q(t + τ̄q , �r)=−k �∇T (t + τ̄T , �r) (2)

where τ̄T is the phase-lag in the temperature gradient vector and τ̄q is the
phase-lag in the heat flux vector. For the case of τ̄T > τ̄q , the temperature
gradient established across a material volume is a result of the heat flow,
implying that the heat flux vector is the cause and the temperature gradi-
ent is the effect. For τ̄T < τ̄q , on the other hand, heat flow is induced by
the temperature gradient established at an earlier time, implying that the
temperature gradient is the cause, while the heat flux vector is the effect.
In the absence of the temperature gradient phase-lag (τ̄T = 0), Eq. (2)
reduces to the classical hyperbolic heat conduction equation as described
by Eq. (1). Also, in the absence of the two phase-lags (τ̄T = τ̄q =0), Eq. (2)
reduces to the classical diffusion equation employing Fourier’s law. Due to



1956 Al-Nimr and Khadrawi

this lagging response, both the hyperbolic and dual-phase-lag heat conduc-
tion models have been receiving increasing attention as compared to the
classical diffusion model, which assumes an immediate response between
the heat flux vector and the temperature gradient.

The objective of this study is to investigate the microchannel transient
thermal behavior under the effect of the dual-phase-lag heat conduction
model. The model that combines the continuum approach with slip at the
boundaries is adopted in this investigation. The effects of the Knudsen num-
ber, the phase-lag in heat flux, and the phase-lag in temperature gradients
on the deviations among the three-heat conduction models are investigated.

2. ANALYSIS

Referring to Fig. 1, we consider a stagnant gas confined between two
infinite horizontal parallel plates. The gas has an initial temperature Ti,
and suddenly the temperature of the upper plate is raised to Tw while the
lower plate is kept insulated. The gas is heated from the upper direction,
and as a result, heat propagates in the downward direction by a pure con-
duction mode since convection currents will not be generated. Using the
dimensionless parameters given in the nomenclature, the governing equa-
tions of the gas thermal behavior, as described by the dual-phase-lag heat
conduction model, are given as [16]

∂θ

∂η
= −∂Q

∂ξ
(3)

Q+ τq

∂Q

∂η
= −

(
∂θ

∂ξ
+ τT

∂2θ

∂η∂ξ

)
(4)

y T (t, L) = Tw

gas LT (0, y) = Ti

(t,0) = 0
∂y

∂T

Fig. 1. Schematic diagram of the problem under consideration.
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Equations (1) and (2) assume the following initial and boundary ther-
mal conditions:

θ(0, ξ) = ∂θ

∂η
(0, ξ)=0 (5a)

∂θ

∂ξ
(η,0)=0 (5b)

θ(η,1)−1 = Kn
�̄

P r
Q(η,1) (5c)

where �̄ = 2−σT
σT

(
2γ

γ+1

)
and Kn= λ

L
(Knudsen number)

Equation (5c) represents the temperature jump at the wall of the
channel. This temperature jump is due to the lack of strong communica-
tion between the gas molecules and the wall itself. At large values of Kn,
the gas mean free path length λ is relatively large, which implies that the
reflected gas molecules from the wall can not gain exactly the wall energy.
Also, the reflected molecules from the wall travel a long distance before
collisions with other molecules so that the other molecules will not sense
the exact temperature of the wall.

Equations (3)–(5) are solved using the Laplace transformation tech-
nique. Now with the notation that L{θ(τ, ξ)}=W(S, ξ) and L{Q(τ, ξ)}=
V (S, ξ), the Laplace transformation of Eqs. (3)–(5) yields

SW = −dV

dξ
(6)

V + τqSV = −dW

dξ
− τT S

dW

dξ
(7)

Also, the Laplace transformation of the boundary conditions is given as

∂W

∂ξ
(S,0) = 0

W(S,1)− 1
S

= Kn
�̄

P r
V (S,1) (8)

According to the boundary conditions given in Eq. (8), Eqs. (6) and (7)
are solved to give

W = 1/S[
cosh(β)−Kn �̄

Pr
S
β

sin h(β)
] cosh(βξ) (9)

V = − sin h(βξ)[
β cosh(β)−Kn �̄

Pr
S sin h(β)

] (10)
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Fig. 2. Effect of the Knudsen number Kn on the dimensionless spatial temperature
distribution.

where β =
√

S(1+τqS)

(1+τT S)

Equations (9) and (10) are inverted in terms of the Riemann-sum
approximation [13] as

θ(η, ξ)∼= eεη

η

[
1
2
W(ε, ξ)+Re

N∑
n=1

W

(
ε + inπ

η
, ξ

)
(−1)n

]
, (11)

where Re refers to the “real part of”, i is the imaginary number, and ε

is the real part of the Bromwich contour that is used in inverting Laplace
transforms. For faster convergence, the quantity εη=4.7 gives the most sat-
isfactory results. The quantity εη=4.7 is found to be appropriate in our case
since other tested values of εη seem to need longer computational time.
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Fig. 3. Effect of the dimensionless phase-lag in the heat flux vector τq on the dimen-
sionless spatial temperature distribution.

3. RESULTS AND DISCUSSION

Figure 2 shows the spatial temperature distribution at different Kn

values. It is shown that as Kn increases, the temperature increases. Higher
values of Kn correspond to lower values of L or higher values of the
molecular mean free path λ. This implies that there are fewer molecules
(high λ) in channels having a smaller width L. As a result, the heat-
ing source applied at the upper surface is able to produce higher heating
effects since it has to heat a less amount of gas as Kn increases.

Figure 3 shows the effect of τq on the temperature spatial distribu-
tion. It is clear that this effect is more pronounced near the location of the
heating source. Also, it is clear that at the same specific instant, every loca-
tion attains lower temperatures as τq increases. As τq increases, the phase-
lag between the heating source (the cause) and the temperature response
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Fig. 4. Effect of the dimensionless phase-lag in the temperature gradient τT on the
dimensionless spatial temperature distribution.

(the effect) increases. This implies that the same location attains higher
temperatures as τq decreases.

Figure 4 shows the effect of τT on the spatial temperature distribu-
tion. Similar to the effect of τq , it is clear that the effect of τT is more
pronounced near the location of the heating source. However, the param-
eter τT has an effect opposite to that traced for τq . In this case, it is
clear that at the same specific instant, every location attains higher tem-
peratures as τT increases. As τT increases, the phase-lag between the heat-
ing source (the cause) and the temperature response (the effect) decreases.
This implies that the same location attains higher temperatures as τT

increases. Figures 5 and 6 show a comparison between the parabolic heat
conduction model and the hyperbolic and dual-phase-lag heat conduction
models, respectively, at different Kn. It is clear from Fig. 5 that the devi-
ations in the thermal behavior of microchannels between the parabolic
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Fig. 5. Effect of the Knudsen number Kn on the dimensionless spatial temperature
distribution for parabolic and hyperbolic heat conduction models.

and hyperbolic models vanish as Kn increases. This implies that both the
parabolic and the hyperbolic models give the same thermal predictions in
microchannels. On the other hand, the deviations between the dual-phase-
lag and the parabolic models increase as Kn increases as shown in Fig. 6.

4. CONCLUSIONS

The transient thermal behavior of a stagnant gas confined in a hor-
izontal microchannel is investigated analytically under the effect of the
dual-phase-lag heat conduction model. Microchannel thermal behavior is
affected by three parameters, Kn, τq , and τT . It is found that as Kn and
τq increase, the slip in the thermal boundary condition increases. On the
other hand, the parameter τT has an effect opposite to that traced for τq .
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Fig. 6. Effect of the Knudsen number Kn on the dimensionless spatial
temperature distribution for parabolic and dual-phase-lag heat conduction
models.

NOMENCLATURE

c specific heat, J·kg−1·K−1

Kn Knudsen number, λ/L

k thermal conductivity, W·m−1·K−1

L characteristic length, m

Pr Prandtl number, να

q conduction heat flux, W·m−2

qo reference conduction heat flux, k�T/L

Q dimensionless conduction heat flux, q/qo

S Laplacian domain
t time, s

to reference time, �TρcL/qo

T temperature, K
Ti ambient and initial temperature, K
Tw wall temperature, K
V Laplace transformation of the dimensionless heat flux
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W Laplace transformation of the dimensionless temperature
y transverse coordinate, m

Greek symbols

α thermal diffusivity, m2·s−1

�T dimensionless temperature difference, Tw −Ti

�̄ = 2−σT

σT

(
2γ

γ+1

)
η dimensionless time, t/to
γ specific heat ratio
λ mean free path, m
ν kinematic viscosity, m2·s−1

ρ density, kg·m−3

σT thermal accommodation coefficient
θ dimensionless temperature, (T −Ti)/(Tw −Ti)

τ̄T phase-lag in temperature gradient, s
τ̄q phase-lag in heat flux vector, s
τT dimensionless phase-lag in temperature gradient,τ̄T α/L2

τq dimensionless phase-lag in heat flux vector,τ̄qα/L2

ξ dimensionless transverse coordinate, y/L

Subscript

i ambient
w wall
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